Explaining the Link Between Causal Reasoning
and Expert Behavior

William R. Swartout and Stephen W. Smoliar

USC/Information Sciences Institute

ABSTRACT: Causal reasoning can be a powerful tool,
but expert diagnosticians don’t seem to use it extensively
in everyday practice. Yet, being able to provide the
causal rationale that underlies a diagnosis or other
medical decision seems to be critical in providing
satisfying explanations and justifications of that decision.
Thus, expert systems are presented with a paradox. It
appears that they should reason non-causally in most
circumstances, but still hav® access to the causal rationale
behind their decisions for providing explanations. In this
paper, we present a paradigm for expert system
construction that provides that capability. In our
approach, causal reasoning that is performed while the
expert system is being designed does not appear in the
expert system itself. But because the design process is
recorded in a machine readable form, explanation routines
have access to that causal reasoning and thus can justify
an expert system’s behavior with a causal argument. We
present three increasingly sophisticated frameworks that
embody this approach, XPLAIN and two versions of the
Explainable Expert Systems framework.

1. Introduction

There is a paradox in causal reasoning. It can be a powerful
tool in performing a difficult diagnosis [Patil 81] and is frequently
used in explaining why a particular diagnosis is correct, but
diagnosticians in a variety of domains don’t seem to use it very much
in performing routine diagnoses [Johnson and Moen 87]. Why does
this occur?

Before this question can be confronted, it is important to
recognize that causal reasoning is essentially an abstraction of some
(usually complex) body of declarative knowledge. In the case of
medicine, such knowledge will include domains such as physiology
and metabolic processes. The need for abstraction of such knowledge
arises from at least two reasons:

1. The amount of knowledge is too great to be
systematically searched in the course of “practical®
problem solving.

2. The level of the knowledge is too detailed. Solving even
the most elementary problem may involve piecing
together an unwieldy number of "basic facts" before one
can draw a conclusion.

Reasoning based on causal relationships is a form of abstraction
which makes such complexity more manageable. We may now
reformulate our question by saying: why is this abstraction often
rejected?

One reason is that medical knowledge is not always so easily
abstracted. In many situations that knowledge may be too

0195-4210/0000/0037$01.00 © 1987 SCAMC, Inc.

37

incomplete to admit of abstraction. In others, the knowledge may be
thorough but so complex in its thoroughness that insights regarding
how that knowledge may be abstracted are still lacking.

The other reason is that there are alternative abstractions. A
major alternative in medicine, as well as other disciplines, is to
abstract from the memory of past problem solving experiences, either
personal or acquired from knowledge of case histories. Another is
the compilation of problem solving knowledge based on either first
principles or causal relations into easily recalled procedures, such as
“rules of thumb." Such procedures may be highly reliable, but the
practitioner may not be able to account for why they work.

Part of the appeal of current expert systems technology is that
it facilitates the translation of such "rules of thumb" into a working
computer program. What these systems lack, however, is any basis
for justification for those rules; and while we may be willing to
accept vague and informal justification from a human expert we
know well enough to trust, we are more reluctant to put such trust
in a software expert and require better justification to instill
confidence in any conclusions such a system might draw.

A useful "middle ground" for such justification is provided by
the abstraction of causal reasoning. For example, compare Figure
1-1 with Figure 1-2. The explanation in Figure 1-1 illustrates the
behavior of an expert system based entirely on "rules of thumb.*
This system is a digitalis therapy advisor [Swartout 77, and in this
example it is trying to determine whether a patient is abnormally
sensitive to digitalis. When the user asks why it wants to know some
data, it responds with a brief account of the rules of thumb it is
trying to use. This explanation lacks any reference to the causal
relations on which the rules are based. Although those relations were
known to the system designer, it was not necessary to represent them
for the system to perform in an expert fashion, hence they were not
represented and are unavailable for explanation. Contrast this with
the account given in Figure 1-2. The same system has now been
enhanced with knowledge of causal relationships which allow it to
account for its behavior in terms which are much closer to the
underlying medical knowledge.

Such causal reasoning can thus be extremely valuable in
enhancing the ability of an expert system to explain its own
behavior. How can such causal knowledge be integrated with the
“rules of thumb" under which most expert systems tend to operate?
This is the question we have been exploring.

WHAT IS THE LEVEL
OF SERUM CALCIUM?

ENTER NUMERICAL VALUE == > why?
The user types "why?" indicating that he ques-
tions why he is being asked to supply the value
of serum calcium.

MY TOP GOAL IS TO BEGIN THERAPY.
ONE STEP IN DOING THAT IS TO CHECK
SENSITIVITIES. I AM NOW TRYING TO
CHECK SENSITIVITY DUE TO CALCIUM.

Figure 1-1: A Limited Justification for a Question

In the remainder of this paper, we will first describe how the
XPLAIN framework employed causal relations in the process of
designing a routine for dealing with drug sensitivities. We will then
describe how the Explainable Expert Systems (EES) project has built
on those results and allowed us to capture the design of an expert
system in a more principled fashion. Version I of EES introduced an
explicit representation of the terminology of the problem domain.
Version II is concerned with capturing a more explicit representation
of the relationship between problem solving knowledge and the
underlying facts of the domain.

2. The XPLAIN framework

The XPLAIN framework [Swartout 83] and its successor, the
EES project at ISI have been concerned with creating a framework
for expert system development that records the reasoning that
underlies the design of an expert system, so that better explanations
can be provided. In our approach, domain experts and system
builders collaborate to construct a high level representation of
knowledge of the domain that explicitly separates different kinds of
knowledge such as knowledge of how the domain works (of which
causal knowledge may be a part), problem solving knowledge and
knowledge of terminology. An automatic programmer is then used
to derive performance-level rules or methods of the sort found in
many expert systems from this abstract representation of knowledge.

Please enter the value of serum calcium: why?

The system is anticipating digitalis toxicity. Increased
serum calcium causes increased automaticity, which may
cause a change to ventricular fibrillation. Increased
digitalis also causes increased automaticity. Thus, if the
system observes increased serum calcium, it reduces the
dose of digitalis due to increased serum calcium.

Please enter the value of serum calcium: 9
Please enter the value of serum potassium: why?

(The system produces a shortened ezplanation, reflecting the
fact that it has already explained several of the causal
relationships in the previous explanation. Also, since the
system remembers that it has already told the user about serum
calcium, and because it knows that the same plan was used to
generate the code for both serum potassium and serum calcium,
it suggests the analogy between the two here.)

The system is anticipating digitalis toxicity. Decreased
serum potassium also causes increased automaticity.
Thus, (as with increased serum calcium) if the system
observes decreased serum potassium, it reduces the dose
of digitalis due to decreased serum potassium.

Please enter the value of serum potassium: 3.7

Figure 1-2: An Explanation of Why Serum Calcium
and Potassium are Checked Produced by

XPLAIN

The derivation process is recorded in a machine-readable form, and
that recorded trace is used by explanation routines to provide
explanations that reflect not only the system’s performance level
knowledge but also the causal knowledge that it is derived from.

To determine what kinds of knowledge structures were
important to model and what kinds of compilation processes we
wanted to capture, we began by determining what kinds of
explanations expert systems needed to offer. Using protocols and our
own experience as expert system builders and users, we identified
approximately a dozen different classes of useful explanations (see

38

[Swartout 86]). We used those results to determine the kinds of
knowledge structures and compilation processes to model. In this
paper, we will focus on three types of questions, which are:

1. justi fications--questions about the appropriateness of the
system’s actions

2. questions about the terminology that the system uses

3. questions about the intent behind the system’s goals, that
is, what it means to achieve a goal

Based on these results, we also identified several different kinds
of knowledge involved in the creation of expert systems. In our
approach to expert system construction, these different kinds of
knowledge are represented separately and explicitly and then
combined together by an automatic program writer tc create a
working expert system. The first two kinds of knowledge we
identified were:

e domain descriptive knowledge is the knowledge that
describes how the domain works. In a medical domain it
is basically physiological knowledge, including knowledge
of physiological parameters, diseases, possible
interventions and causal relationships among them. This
is typically the sort of knowledge that one finds in
textbooks. What is missing from domain descriptive
knowledge is the "how to* knowledge, which is our
second category of knowledge.

problem solving knowledge supplies knowledge about
how tasks (called goals in our system) can be
accomplished. This is where knowledge about how to
perform a diagnosis or how to administer a drug belongs.
In our representation, problem solving knowledge is
organized into plans. Plans have capability descriptions
which describe what goals they can achieve. Each plan
also has a method which is a sequence of substeps (which
may themselves include subgoals) for accomplishing the
goal. Capability descriptions are patterns and may
include variables that are bound when the capability
description is matched against a goal to be achieved.

Our first experiment with this approach was the XPLAIN
framework. It provided explicit representations for domain
descriptive knowledge and problem solving knowledge. We used
digitalis therapy as a testbed domain in developing XPLAIN. We will
use an example from this domain to illustrate how the program
writer worked and the kinds of knowledge that were represented.
For this domain, the descriptive domain knowledge included causal
relations between physiological states and characterizations of those
states such as:

Increased digitalis causes increased automaticity.
Decreased serum potassium causes increased automaticity.
Increased serum calcium causes increased automaticity.
Increased automaticity may cause ventricular fibrillation.
Ventricular fibrillation is a dangerous condition.
Decreased serum potassium is an observable deviation.

Increased serum calcium is an observable deviation.

The problem solving knowledge consisted of plans (called
domain principles in XPLAIN) for various tasks such as assessing
the patient’s state, gathering information about the patient and
compensating the drug dose for sensitivities. As described above,

these plans contained capability descriptions' and methods. In
XPLAIN, plans also had a third component, called a domain
rationale, which was a pattern that was matched against the domain
descriptive model when the plan was instantiated. Variables in the
domain rationale could appear in the steps of the method and when
the steps of the plan were instantiated, the variables were replaced
by their bound values.

To illustrate how this worked, consider the plan concerned with
the problem of adjusting the dosage for patients who might be
abnormally sensitive to digitalis. It expressed the common sense
notion that if a patient had some condition that might interact with
the drug in a dangerous way, then the drug dosage should be

reduced. In paraphrased form, the plan was represented as:

Capability-description: anticipate drug toxicity

Domain-rationale:
An observable deviation that causes
a dangerous condition that is also
caused by the drug.

Method: If the observable deviation exists in

the patient, then reduce the drug
dose

This plan had a capability description that stated that it could

“anticipate drug toxicity"3, its domain rationale was a pattern
matched against the domain decriptive model to find those cases
where some observable deviation caused something dangerous to
happen that was also caused by the drug being administered. The
plan’s method consisted of a single conditional step that stated that
if one of the observable deviations mentioned in the domain rationale
existed, then the patient’s dosage should be reduced. When this plan
was instantiated, there were two matches for the domain rationale,
one for increased serum calcium interacting with digitalis to lead to
ventricular fibrillation and the other for decreased serum potassium.
The program writer instantiated the plan’s method twice, once for
each match. The program writer also reasoned about the what
should be done if multiple sensitivities occurred simultaneously (see

[Swartout 81] for a description of that reasoning). This entire
process was recorded so that it could later be used in giving much
richer explanations that reflected the causal underpinnings that the
expert system was based on, as shown in Figure 1-2. The critical
difference between that explanation and the one in Figure 1-1 are the
second and third sentences of the first explanation which provide a
causal reason for checking serum calcium. This explanation was
produced by paraphasing the causal relations that matched the
domain rationale of the plan used to generate this code for checking
serum calcium.

3. EES version I

While XPLAIN was capable of offering better explanations,
particularly in the first category above of justifications, there were
some aspects of its design that troubled us. A major problem was
that the domain rationale appeared to be unmotivated in the sense
that it was difficult to state precisely what role it played during
system creation. Eventually, we realized that the domain rationale
was actually providing an implicit definition of terminology. In the
example above, the domain rationale was defining what it meant for

1Somewhat misleadingly, capability descriptions were called "goals" in XPLAIN.

2Putern variables are in italics.

3We now feel that it would be more appropriate to call this capabiltiy "compensate
for drug sensitivities®

39

something to be a "sensitivity®. We further realized that it was
inappropriate to represent terminology as part of problem solving
knowledge, but instead it should have a separate representation.
Such a representation would also allow us to answer questions about
terminology, our second question category above. In building the
first version of EES, we added terminology as another kind of
knowledge to our framework. This explicit terminology provided us
with the building blocks that were used for representing facts as part
of domain descriptive knowledge and goals and methods as part of
problem solving knowledge.

8.1. Adding Terminology

In most expert systems, terms and their definitions are
understood by the system builder, but the terms are not explicitly
defined within the system itself. Instead, the terms used by the
system implicitly acquire a definition based on how other knowledge
sources in the system react to them and the operational mechanisms
for recognizing instances of those terms. This can lead to problems
both in explanation and maintenance of an expert system. We
wanted to provide an explicit and independent definition for
terminology, which we defined as:

o terminology is knowledge of domain concepts and
relationships that forms the language that knowledge
sources within an expert system use to communicate.

To illustrate the problem of implicit terminology briefly,
suppose we define a very simple rule for recognizing fever:

If patient’s temperature > 100
then conclude fever.

Arguably, this rule could be considered a definition of what fever is,
that is, a temperature greater than 100 degrees. An explanation
routine could display the rule whenever a user wanted to know how
fever was defined. In fact, that would confuse an operational means
for recognizing fever with a definition for it. To see that, consider
what might happen if we put our little “expert system® out in the
field. We might find that we obtain many false positive results
because some people drink hot coffee before taking their
temperature. Of course, we can easily fix that by modifying the rule:

If patient’s temperature > 100
and patient has not recently drunk

coffee

then conclude fever.

Unfortunately, if we now display this rule as a definition for what
fever means, the definition of fever would appear to have something
to do with whether or not coffee has been consumed. The point is
that an explicit definition for terminology is needed that is separate
from the operational means for recognizing when some condition
holds.

To provide an explicit representation for terminology, we have
been using a knowledge representation system based on the ideas
pioneered in KL-ONE [Brachman 78]. Our representation is based
on concepts (which correspond to terms) and attributes arranged in a
generalization hierarchy. As new terms are introduced, their position
in this hierarchy is determined by an automatic classification facility.
Since plan capabilities and goals are represented as concepts in this
formalism, the generalization hierarchy of terms induces a
generalization hierarchy of plans.

Taking this approach, it becomes clear that XPLAIN’s domain
rationale was a poor mechanism for dealing with terminology, first
because it doesn’t give an explicit definition for a term, and second
because it confounds knowledge of terminology with problem solving
knowledge. Knowledge of terminology should be shared across
problem solving knowledge, not embedded as part of it. For
example, in the context of the digitalis advisor, the pattern in the
domain rationale of the plan for dealing with digitalis sensitivities
should be removed from that plan and placed in the terminological
base as a definition for the term “sensitivity". That provides a
better representation for terminology, but leaves open the question of
exactly how that terminology gets used during the program writing
process. At least a partial answer to that question came from

addressing another limitation of XPLAIN, and providing EES version
I with a program writer capable of reformulating goals.

3.2. Adding Reformulations

The power of XPLAIN’s program writer was quite limited.
Although XPLAIN allowed a system builder to express the capabilities
of a plan as a pattern that included variables, if a goal was posted
and no matching plan could be found for it, the program writer was
stuck. It had no capability to reformulate such a goal into a goal or
set of goals for which plans could be found. We decided to add such
a capability because we anticipated that in would provide several
benefits. Maintenance and initial system construction would be
easier because the program writer would be able to bridge larger
gaps between plans and goals, and knowledge would be re-usable in a
larger range of situations. As we will describe below, an additional
benefit was that the reformulation capability together with an
explicit representation of terminology allowed us to give a more
explicit account of some of the implicit operations in XPLAIN.

We identified several different kinds of reformulations (see
[Neches, et al. 85] for a detailed discussion). The reformulation we
will focus on here is a special case of reformulation into cases, that
is, reformulating a goal of an action to be performed over a set of
objects into a set of goals where the action is performed on
individual elements of the original set of objects. This is a kind of
reformulation that takes place frequently (but implicitly) in expert
systems.

For example, in many diagnostic systems, a problem that arises
is to determine how likely it is that a patient has some disease based
on its signs and symptoms. In conventional expert systems, that goal
is usually not explicitly represented in the system because the system
designer mentally reformulates it while constructing the system.
What does appear is the result of the reformulation: a set of goals
that inquire about each of the symptoms individually and a
combining function that deals with the problem of how to combine
the individual assessments of signs and symptoms into an
appropriate overall assessment for the disease. EES allowed us to
represent the original goal, the reformulation, and the result of the
reformulation explicitly.

We also realized that XPLAIN had been implicitly reformulating
goals. For example, in the plan for dealing with drug sensitivities
that we described above, the capability description of the plan stated
that the plan could deal with compensating for all sensitivities, but
the method of the plan could only compensate for individual
sensitivities. Clearly, some implicit reformulation was taking place.

If we wanted to re-implement the digitalis advisor using EES?,
we would model the reformulation more explicitly. The problem
solving knowledge would consist of a plan whose capability
description stated that it could "compensate for a drug sensitivity".
The plan’s method would be similar to the method of the plan in
XPLAIN. The term "drug sensitivity" would be defined explicitly as
an observable deviation that caused something dangerous that was
also caused by the drug. When the goal of compensating for digitalis
sensitivities was posted, the program writer would find that no plans
existed for dealing with sets of sensitivities, so it would be necessary
to reformulate the goal into a set of goals over individual
sensitivities. Using the definition of sensitivity together with the
domain descriptive knowledge above, the programmer would find
that increased serum calcium and decreased serum potassium were
individual sensitivities, so the original goal of compensating for
digitalis sensitivities would be reformulated into two goals:

compensate for increased serum calcium
compensate for decreased serum potassium

These goals could then be implemented by the plan for an individual
sensitivity.

4We did not actually carry out this re-implementation in EES version I. Certain
limitations on the expressive power of NIKL would have made it difficult to represent
terms involving transitive relations, like sensitivity. We are currently in the process of
carrying out the re-implementation of portions of the digitalis advisor in EES version
11, which uses a more expressive knowledge representation.

40

We feel that this approach captures more explicitly the
program writing process that was taking place in XPLAIN, and it
allows us to capture the knowledge needed to answer additional
kinds of questions, such as questions about terminology. We also feel
that this gives a good account for one of the ways causal knowledge
is compiled into expert systems:

Causal knowledge, together with knowledge of
terminology, is used during goal reformulation.

In the remainder of the paper we will describe our efforts to
capture the knowledge needed to answer the third type of question
listed above, questions about the intent of goals. This investigation
led us to discover another way in which causal knowledge can be
compiled into expert systems.

4. EES version II

While version I of EES allowed us to represent terminology and
model reformulation, there were two open issues that we wanted to
address. First, we wanted to be able to represent the intent behind a
goal. For example, it was not possible to answer the question:
"What does it mean to administer digitalis? Problem solving
knowledge of how to give digitalis could be retrieved, but it was not
represented anywhere that the problem of digitalis adminsitration
was a problem of producing satisfactory therapeutic results subject
to the constraint of avoiding (or minimizing) toxic effects.

For another example, consider an expert system we built in
EES version I for diagnosing space telemetry systems. This system
had several methods for diagnosis, which we have hand paraphrased
in Figure 4-1. These display what the system does in performing a
diagnosis, but it takes considerable deductive effort on the part of
the user to figure out what a diagnosis amounts to. What we want
is an explicit representation of the intent behind the goal in this
domain that would allow us to answer: "To diagnose a decomposable
system means to find a primitive subcomponent of the system that is
faulty." In general, expert systems lack any such specification of
what their goals mean. The problem is directly analogous to the
problem of implicit terminology cited above. Goals acquire their
meaning based solely on the methods that claim to implement them.
What we want is a separate definition for goals that a user could use
as an independent criterion in deciding whether or the systems goals
met his own and whether its methods were appropriate for achieving
those goals.

The second issue we wanted to address was to better
understand the source of problem solving knowledge. While both
XPLAIN and version I of EES allowed a system builder to represent
problem solving knowledge at a more abstract level than is possible
in most expert system frameworks, it was clear that even those
methods were compiled from some still more basic representations of
knowledge. By understanding the "roots" of problem solving
knowledge, we could provide better explanations of how the plans
worked.

Below, we will describe the approach we have adopted, which is
to represent goal intent in terms of a small number of primitive
actions and then to mechanically derive plans for achieving those
goals by transforming definitions and axioms in the domain
descriptive knowledge into plans. We have been exploring this
approach in the context of a non-medical domain, namely diagnosis
of digital circuits, but we expect the approach to carry over into
medical domains and are currently starting to re-implement portions
of the digitalis advisor using this approach. Most of the examples in
the remainder of the paper will drawn from our work with digital
circuits, but we will outline some of the issues the medical domain is
raising below.

To diagnose a decomposable system,
If there is a fault in the system,
then locate the cause of the fault
within the system

To diagnose a primitive systenm,
If the system is faulty,
then conclude it is the diagnosis

To locate the cause of a fault within a
system which is loosely-coupled,
Diagnose the subcomponents of the system

To locate the cause of a fault within a
system which 1s tightly-coupled,
Locate the cause of the fault along the
signal-path beginning at the system-
input and ending at the system-output.

To locate the cause of a fault beginning at
systeml and ending at system2,
If systeml is faulty
then diagnose systemi
else locate the cause of the fault
along the signal-path beginning at
the system that systeml outputs to
and ending at system2.

Methods as an Inadequate Explanation of
the Goal of Diagnosis

Figure 4-1:

4.1. Capturing Intent

To capture intent, we begin by defining a set of primitive
actions. These are actions that are assumed to be readily understood
by users. All higher level goals are ultimately defined in terms of
these primitive actions. So far we have identified four primitive
actions:

1. determine-whether: establishes the truth of a given
assertion

2. find: finds an object that matches a given description
3. achieve: achieves a particular state

4. avoid: the counterpart of achieve, it insures that a
particular state does not occur.

We believe that this set of actions will grow somewhat as we
gain more experience with this approach. We used the first two
actions extensively in our system for diagnosing digital circuits.
Interestingly, those actions correspond to the kinds of problems
analyzed by Polya [Polya 71]: problems to prove and problems to
find. We have found the last two actions to be useful in our analysis
of the digitalis therapy advisor, since much of digitalis therapy is
concerned with achieving a therapeutic effect while avoiding toxicity.
Given these primitive actions, capturing the intent behind a domain
level goal then involves linking that goal to its definition in terms of
primitive actions. Thus, we would define the goal:

"diagnose decomposable digital system &"

as the problem:
" finding a primitive system p such that p is a
subcomponent of s and p is faulty"

41

4.2. The Sources of Problem Solving Knowledge

The primitive actions allow us to capture the intent behind
goals, but the issue still remains of how to implement the plans for
realizing those goals. In EES version II, plans enter the knowledge
base in two ways.

Mechanically derived plans

The first way is that plans for performing primitive actions are
mechanically derived by performing transformations on the
assertions and definitions in the domain descriptive knowledge base.
For a very simple example, if the knowledge base contains the
assertion that "A exists if and only if B exists," then it is possible to
derive a plan that determines whether B exists by checking for the
presence of A. Since the implication is two-way, it is also possible to
derive another plan for checking for the existence of A by checking

for BS. Considerably more complex examples can be handled. In
constructing the digital circuit diagnoser, the domain descriptive
model was a functional description of the interconnections within the
circuit and the functional behavior of the devices in the circuit.
Given that description, it was possible to mechanically derive a set of
procedures for finding the expected signal value along any connector
in the circuit, given a particular set of input values.

An interesting observation is emerging from our initial work in
the digitalis domain, which is that different kinds of primitive
actions seem to involve transformations over different kinds of
domain descriptive knowledge. The transformations for deriving
plans for performing find actions involve sets and instances,
determine-whether involves implications and types, and achieve and
avoid involve states, state transitions, and causality. Thus, we are
finding that another way that mechanistic descriptions or causal
relations can be compiled 1nto an expert system 1s by:

Direct translation into methods for performing
primitive actions.

Weak methods

The other way that plans can enter the knowledge base is by
being entered by hand. That may be obvious, but there is one
category of such plans that deserves special attention. We call these
plans weak methods. These are very general plans, not specific to
any domain, that provide a means for performing achieving the
primitive actions in some very general circumstances. For example,
one of our weak methods involving determine-whether states that
the problem of determining the truth of a conjunction of two
assertions can be performed by determining the truth of each
assertion in turn and combining the results in the obvious way.
Another weak method for finding an object that matches a
description is the classic generate-and-test.

Our view of weak methods differs from previous ones, such as
[Laird 83]. Such views regard the weak methods themselves as
primitive elements, and problem solving as the application of
operators within a problem space. The alternative view which we
propose is to regard problem solving in terms a foundation of
primitive actions which are the primitive elements. Weak methods,
then, are concerned with providing general ways for achieving those
actions.

Our experience with the second version of EES is still in the
early stages. Nevertheless, it appears to provide some of the
additional knowledge structures we need to answer our third
category of question, i.e. questions about intent.

5. Status

XPLAIN and EES version I have been implemented and used to
construct demonstration sized expert systems in medical and non-
medical domains. We have tested EES version II on the problem of
locating a faulty component in a digital circuit, and are now engaged

50!’ course, care must be taken in interpreting such plans to avoid circular reasoning
chains.

in using it to re-implement portions of the digitalis advisor. An
explanation facility was implemented for XPLAIN and we are
currently constructing one for EES.

6. Summary

We have argued that even though experts may not use causal
reasoning, such reasoning is a useful abstraction that underlies many
of their decisions. We also asserted that causal reasoning must be
accessible to provide good explanations and therefore warrants
explicit representation in an expert system. We described three
systems that have pursued the explicit representation of causal
knowledge, the application of that knowledge to problem solving,
and the use of that knowledge to explain problem solving behavior.

ACKNOWLEDGEMENTS

The research described here was supported under DARPA
Grant #MDA 903-81-C-0335 and National Institutes of Health Grant
#1 P01 LM 03374-01 from the National Library of Medicine.

References

[Brachman 78] Brachman, R., A Structural Paradigm for
Representing Knowledge, Bolt, Beranek & Newman, Inc.,
Technical Report, 1978.

[Johnson and Moen 87] Johnson, P. J., and Moen, J. B., Garden
Path Errors in Diagnostic Reasoning, Springer-Verlag, 1987.
(to appear)

[Laird 83] Laird, J. and Newell, A., A Universal Weak Method,
Carnegie-Mellon University Department of Computer Science,
Pittsburgh, PA, Technical Report CMU-CS-83-141, June 1983.

[Neches, et al. 85] Neches, R., W. Swartout, J. Moore, *Enhanced
Maintenance and Explanation of Expert Systems through
Explicit Models of Their Development," Transactions On
Software Engineering, November 1985. Revised version of
article in Proceedings of the [EEE Workshop on Principles of
Knowledge-Based Systems, December, 1984

[Patil 81] Patil, R., Causal representation of patient illness for
electrolyte and acid-base diagnosis, Ph.D. thesis, Massachusetts
Institute of Technology, 1981. (available as MIT/LCS/TR-267)

[Polya 71] Polya, G., How To Solve It: A New Aspect of
Mathematical Method, Princeton University Press, Princeton,
NJ, 1971. Second edition.

[Swartout 77] Swartout, W.R., A Digitalis Therapy Advisor with
Ezplanations, Massachusetts Institute Technology, Technical
Report Laboratory for Computer Science TR-176, February
1977.

[Swartout 81] Swartout, W., Producing explanations and
Justi fications of expert consulting systems, MIT, Technical
Report 251, 1981.

[Swartout 83] Swartout, W., "XPLAIN: A system for creating and
explaining expert consulting systems,* Arti ficial Intelligence 21,
(3), September 1983, 285-325. Also available as ISI/RS-83-4

[Swartout 86] Swartout, W., *Knowledge Needed for Expert System
Explanation," Future Computing Systems 1, (2), 1986.

42

